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A molecular model of disentanglement below the glass transition temperature is applied to the crazing 
behaviour of polymers, such as polyethersulphone and polycarbonate, in which the molecules exhibit 
non-diffusive reptation. For the case when chain scission is not important, molecular weight dependences 
of the crazing stress, flow stress and surface energy are calculated and compared with experimental results. 
The model provides an explanation of the observed absence of any effect of ageing on crazing, in contrast 
to its effect on shear deformation. 
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INTRODUCTION 

The dynamics of polymer molecules in concentrated 
solutions or melts are constrained by their topological 
interactions, or entanglements. This has long been 
regarded as the molecular basis of viscoelasticity 1. A 
quantitative model which regards each chain as 
constrained by an effective 'tube' along its own contour 
was developed into a theory for monodisperse linear 
melts by Doi and Edwards 2. The one-dimensional 
dynamics of polymers along their tubes is termed 
'reptation'. Subsequent work has sought to extend our 
understanding of the liquid polymeric state, and 
applications to phenomenona below the glass transition 
temperature have been made by Prentice 3 and Evans 4. 
Recently Berger and Kramer 5 suggested that reptation 
may be important in crazing. 

Crazing describes a particular mode of failure 
of a polymeric glass under tension. Experiments are 
commonly performed on thin films of polymer, which 
are deformed macroscopically so that microscopic 
regions of large deformation nucleate. These microscopic 
regions may themselves be deformed uniformly or 
contain detailed structure. Local regions of uniform 
deformation are commonly termed 'shear deformation 
zones', but under certain circumstances highly non- 
uniform deformation is observed in the form of crazes. 
The microscopic structure of a craze may be described 
as a crack whose faces are connected by many 
surface-drawn filaments. Many polymers exhibit this 
behaviour over some range of temperatures and 
strain rates: polystyrene (PS), polymethylmethacrylate 
(PMMA) and polycarbonate (PC) are common examples. 
The microscopic behaviour of crazes and their 
contrasts with deformation zones has been reviewed 
thoroughly by Kramer 6. 

Recent experiments have highlighted the importance 
of molecular structure and entanglements in these 
deformation processes. First it was noted that there is a 
critical molecular weight, specific to each polymer, below 
which stable crazes do not form. Similar critical 
behaviour appears in the viscoelasticity of the melts, 

where we find a critical molecular weight above which 
the dynamic response is characteristic of polymers which 
are entangled with each other and below which they 
appear topologically unconstrained 2. These two critical 
molecular weights are always of the same order 7. 

Second, to generate the void-fibril structure of a craze, 
Kramer 6 has pointed out that there is a geometrically 
necessary entanglement loss which is not necessary for 
the production of shear deformation zones. This loss can 
be accomplished either by chain scission or disentangle- 
ment. One or other of the two processes may dominate 
under different conditions of shear rate and temperature. 
Thus, samples under identical strains may preferentially 
exhibit shear deformation in one range of temperatures 
and crazing in another. The corresponding transition 
temperature depends on molecular weight s-l°. 

Third, the final local extension of craze fibrils of PS 
formed at high temperatures depends strongly on 
molecular weight s . Higher molecular weight samples 
have much smaller final extension ratios, suggesting that 
less disentanglement has occurred than is possible with 
shorter chains. 

Fourth, at lower temperatures PS crazes lose the 
molecular weight dependence of their properties1 o. If this 
is because disentanglment is suppressed by virtue of much 
reduced molecular mobility then the fibrillation must 
occur by chain scission instead, a process clearly 
independent of molecular weight. In this case local 
stresses are indeed consistent with the need to 
break main-chain covalent bonds. The transition 
from 'scission-dominated crazing' to 'disentanglement- 
dominated crazing' is a smooth one 6. 

Fifth, in the scission-dominated regime the final 
deformation of craze fibrils is constrained by the 
entanglement density of the polymer glass ~1. Local 
deformations cannot stretch chain segments between 
entanglements beyond their maximum extent. Experi- 
ments on different chemistries and using low molecular 
weight fractions to dilute the entanglement network 
confirm this effect. 

Sixth, in experiments measuring the propagation 
velocity of the craze/bulk interface, vi, in polystyrene, a 
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molecular weight dependence well described by a power 
law is found: 

v i ~ M  - 2 ' s  (1)  

where M is the molecular weight 5. These experiments are 
carried out at a fixed final fibril extension. 

Berger and Kramer have suggested that local stresses 
in the vicinity of the craze may mobilize molecules within 
the glass to undergo reptation as in the melt, and 
interpreted equation (1) in this light. However, the 
magnitudes of the mobilities required are enormous if 
the diffusive dynamics of reptation are responsible for 
crazing by disentanglement 5. They correspond to 
effective temperatures many tens of degrees above the 
glass transition temperature. This approach also requires 
the approaching craze front to 'mobilize' an entire 
molecule simultaneously to allow it to diffuse. Experi- 
ments using a gold deposition technique to measure the 
extent of the 'process zone' behind the craze (the region 
of plastic flow), however, find that it is typically much 
less than a radius of gyration 12. This seems to rule out 
a simple picture of mobilized diffusive reptation. We 
examine here the consequences of a slightly different 
model, in which molecular reptation is forced or 
non-diffusive, concentrating on the case of 
disentanglement-dominated crazing. 

THE MODEL 

Mechanism and mobility 
A schematic picture of the craze/polymer interface is 

shown in Figure1. Polystyrene of molecular weight 
M~500000 crazes with a typical fibril spacing of 
10-20 nm, whereas the radius of gyration of a molecule 
is of the order of 50 nm. The number of different molecules 
within a volume spanned by a radius of gyration is large, 
growing as M 1/2, and these must be distributed among 
several fibrils as the craze front advances. If chain scission 
is unimportant, then the fibrils must form and grow by 
chains disentangling along their own contours. 

The idealization of this process is that a single chain 
is drawn out of the bulk polymer glass by a tension 
applied to a random segment of its contour, which might 
be anchored in a growing fibril. We require an expression 
for the mobility of one of these trapped polymers. Of 

process zone 

..~-- % ._ .~  

Figure 1 Idealized craze/bulk interface. The bases of three fibrils are 
shown and typical contours of two molecules, indicated by a solid and 
broken curve. Arrows indicate the propagation of the craze into the 
bulk. a o is the stress midway between fibrils, a m is the stress at their 
bases. So is the bulk stress preceding the craze front. The typical extent 
of the process zone is shown 

course there is no diffusion below the glass transition, so 
we cannot use a simple fluctiation~tissipation argument. 
Instead we have to assume that the cooperative barriers 
to centre-of-mass motion may be overcome by the highly 
localized stress applied along the chain contour. Inside 
the polymer glass, segments are located in a distribution 
of local environments which may be modelled as energy 
wells of depths E(s) (s here is a monomer label or contour 
variable) and width b (a monomeric length parameter). 
In this case individual segment mobilities are propor- 
tional to exp{-E(s ) /kT} .  The inverse mobilities of all 
the segments add so the total mobility of a single chain 
# will be given by 

L 

"~#o ~ ~exp{E(s)/kT} ds/b (2) #-1 

0 

where the effective friction constants of monomers along 
the chain add. #o is a high temperature monomeric 
mobility. The simple Arrhenius form is more appropriate 
than the Vogel-Fulcher relation because we are not 
concerned with the cooperative dynamics of bulk 
viscosity la, but with highly localized response. From 
equation (2) the mobility is clearly inversely proportional 
to molecular weight, which is all that is needed for the 
following section. However, as will be shown in the final 
section, the wide distribution of monomeric mobilities 
that appears below T, in contrast to the melt, will 
dramatically affect the ageing behaviour. 

Constitutive behaviour under scission and disentanglement 
The problem before us requires answers to two 

questions: first, what is the constitutive behaviour of a 
disentangling polymeric glass, i.e. its stress-strain history 
relationship? Second, what stresses are required to create 
the new surfaces and fibrils in the particular geometry of 
a craze? The ultimate goal of a molecular model such as 
that outlined above must be to answer both, but notable 
progress has been made in the case of scission-dominated 
crazing by concentrating on the second, while assuming 
a non-Newtonian flow law for the constitutive 
behaviour: 

a = ayc(T)[k/~c] 1/" (3) 

Though not derived from a molecular model, this is 
consistent with the picture described above: to maintain 
a stress requires a deformation rate (below Tg any 
configuration is near to a local energy minimum into 
which the system rapidly relaxes). Also we expect a 
'yielding' behaviour, which equation (3) models if n>> 1. 
Under this interpretation arc(T) is the (temperature 
dependent) critical local stress for shear deformation and 
~o is the local strain rate at this critical stress. 

The same considerations may justify such an 
approximate constitutive equation in the case of 
disentanglement-dominated crazing. We expect a critical 
local stress ffyd(T), which will be temperature dependent, 
to initiate disentanglement. The difference is that now 
chains do not break, so that molecular weight will enter 
the constitutive equation. Because disentanglement 
stresses are transmitted along chains, each segment 
requiring an equal stress to mobilize it on average, we 
can take ayd to be proportional to molecular weight so 
that the constitutive equation becomes 

o = Oydo(T)(M/M=) (e'le'¢) tin (4) 
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where aydO is now the yield stress for molecules of the 
entanglement molecular weight, Me, and e'~ the critical 
local deformation rate. 

This result needs to be combined with an under- 
standing of the surface energy of the forming fibrils, as 
first deduced by Paredes and Fischer 14 and developed 
by Kramer 6. We briefly summarize here the argument, 
established for scission-dominated crazes, which relates 
the bulk (non-local) stress during craze propagation, S¢, 
to the craze surface energy F and the local yield stress 
for disentanglement ay d. 

The flow of material into the craze fibrils is governed 
by the stress gradient at their bases. This is approximated 
to within a geometric factor by a linear interpolation 
between the stress at the base of the fibrils a,~, and the 
stress midway between them where new surface is formed, 
a o (see Figure I). 

iVal ~ 2(ao--am) (5) 
Do 

Do is the mean separation between fibrils. Now an, is 
directly proportional to the bulk stress S~, and a 0 is 
dominated by the energy of the new surface at the fibril 
base: 

a~.=BSc 
(6) 

F 
0 " 0 ~  - -  

Do 

The additional assumption is that the fibril spacing 
corresponding to the maximum possible value of IVal 
(fastest craze growth) is observed. Differentiating 
equation (5) with respect to Do gives this observed 
spacing D*: 

OJ ~ r/se (7) 

where we have omitted dimensionless prefactors. 
Finally, the stress gradient in equation (5) may also 

be related via the constitutive equation to the local 
deformation rate 

Ival ~ (aye/h) (/;//3e) TM (8) 

where h is the width of the 'process zone' where 
deformtion is significant. Now the bulk crazing stress 
S e can be related to the constitutive and surface energy 
parameters directly: 

S e ~ [O'y¢(T)(~/~e)l/nFs] 1/2 (9) 

Here F~ denotes the surface energy of a scission- 
dominated craze. If we can discover the appropriate form 
of the surface energy for a disentanglement-dominated 
craze, Fa, we can write down the form of the crazing 
stress in this regime: 

Se ~ [%ao(T) (M/Me) (k/kc)l/nFa] 1/2 (10) 

Surface energy of a disentanglement craze 
The expression for Fs was first given by Kramer15: 

F~ = y + (1/4)dvEU (1 1 ) 

Here 7 is the Van der Waals surface energy. The second 
term is due to chain scission, and counts the number of 
segments joining entanglements across a unit area of 
surface. U is the covalent bond energy, VE the density of 
entanglements and d the spatial separation of linked 
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entanglements. Recent experiments on polystyrene by 
Berger and Kramer 1° confirm the form of equation (11) 
quantitatively. 

When new surfaces form by disentanglement, the 
second term in equation (11) must be replaced by the 
energy required to disentangle all chains which cross a 
unit area of surface. We first calculate the energy required 
to withdraw a single entangled chain from the glass, 
following Prentice 3 and Evans 4. The force along the chain 
is proportional to the rate of disentanglement (~e )  and 
to the fraction of chain still entangled 2. Thus the total 
energy for disentanglement Ud is 

f/ Ud~e# -1 2d(M2)~M 2 (12) 

We note that this contribution to the surface energy 
is dissipative, and therefore rate dependent. As an aside, 
it is worth pointing out that the value above is also 
dependent on chains experiencing a constant contour 
velocity with respect to their local environments as they 
disentangle. This is the case in the craze geometry 
(Figure1). An alternative geometry shown in Figure2 
would also require the creation of a free surface by 
disentangling the chains initially crossing it. In this case, 
however, since a chain typically crosses the surface many 
times, the contour velocity is amplified along its length 
via a 'block and tackle' mechanism, and ud would vary 
as eM 3 in contrast to the e M  2 relevant to crazing. Such 
a geometry occurs in 'cleavage bar' and 'single edge 
notch' experiments. This means that Prentice's calcu- 
lation 3, equivalent to equation (12) above, is not 
appropriate to the experiments to which he refers, which 
are of the latter types. 

The total contribution of disentanglement to the 
surface energy is the product of u d and the number of 
different chains crossing a unit area of surface, ns. This 
is not independent of molecular weight, as stated by 
Prentice 3, because of multiple crossings. The scaling 
relationship may be found from the properties of random 
walks of radius of gyration R 8 and molecular weight M: 

ns ~ (area spanned by chain)- 1 (number of chains at fixed 
density within volume of one chain) 

~ R ;  2(R3,/M) 

M - 1 (M 3/2/M) 

,,~M -1/2 (13) 

Z• 
x 

x 

X 

F i g u r e  2 An alternative geometry for surface formation by 
disentanglement. The motion of the separating surfaces is indicated by 
the open arrows. The solid arrows show the local contour velocity of 
the disentangling chain. This increases towards the chain ends 
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So the total work done by disentanglement is 

U d = nB,u d ,,~ kM2 M - 1/2 ,., kM-a/2 (14) 

This is the result of crazing; the analogous result for 
cleavage bar experiments is a molecular weight 
dependence of surface energy varying as M 2"5. This is in 
exact agreement with the experiments of Kuzy and 
Katz 16 referred to by Prentice 3. 

We now have the expression for Fd analogous to 
equation (11) that we sought: 

F d = ~ + w([?/~¢) ( M / M e )  3/2 dv E (15) 

where w is the contribution of a single entanglement 
length to the disentanglement dissipation; w is certainly 
temperature dependent, but should be bounded above 
by the covalent bond energy U. 

We may evaluate the molecular weight dependence of 
the bulk crazing stress So by using equation (15) in 
equation (10) to find: 

S c ~, {tryd0(T ) (M/M=) (i~/k~) TM 

()~ + W(/~//}¢) ( M / M e )  3/2 dYE) } 1/2 ~ M5/4 (16) 

when the constant 7 term is negligible. This will be the 
case in polymers of high entanglement density such as 
polyethersulphone (PES) and PC. Recent measurements 
of S= in PES and PC by Plummer and Donald 9 are 
consistent with this scaling. For PES at a temperature 
of 390K, for example, the strain to craze for a 
polydisperse sample of Mw = 69 000 was 1.66 times that 
for a sample of Mw=47000. The predicted ratio (for 
monodisperse material as assumed throughout the model 
described above) is 1.61 (for small ~,). At this temperature 
both samples have identical temperature dependence of 
the crazing stress, indicating that they are crazing by the 
same mechanism. For other polymers, PS in particular, 
the ~, term may be more important. In the limit where it 
dominates we note that we would find S c u M  1/2 rather 
than the 5/4 scaling at the opposite limit. Experiments 
on the molecular weight dependence of the crazing stress 
in PS at constant deformation rate similar to those on 
PES and PC referred to above would shed light here. 

We also note that this model gives us a guide to the 
molecular weight dependence of the fibril spacing Do. 
Equation (7) together with the results above allows us 
to eliminate S~. In the limit of small ~, we find 

D o o M  1/4 (17) 

and in the (rather unphysical) limit of dominant ~, 

D o o M  -1/2 (18) 

Physically realizable cases must lie somewhere between 
these two limits, which suggests a rather weak 
dependence should be observed. This is indeed seen in 
recent experiments by Berger et al. 1° on PS, where VE is 
rather lower than in PC or PES. 

Propagation velocity of the craze/bulk interface 
For both classical reptation and the present case of 

'forced' reptation we can define a disengagement time ~d, 
the characteristic time for a chain to escape its original 
entanglements. Forced reptation gives a less universal 
prediction for Zd than classical reptation because it is not 
a Brownian process. One consequence of this is that the 
interface velocity required to produce a given final fibril 
deformation, considered as a function of molecular 

weight by Berger and Kramer 5 is not a universal function 
of molecular weight, but depends principally on any 
residual scission in the crazing process. This may be seen 
as follows. 

If F is the down-chain force on an entangled polymer, 
then the contour velocity is proportional to F/M, and 
the disengagement time scales as 

Td ~ M/(F/M) ~ M2F (19) 

If the craze front is propagating through the glass at 
a velocity vi, then another characteristic time arises: that 
of the residence time of a single chain in the process zone, 
zrcs. This is the time taken for the craze front to cross a 
radius of gyration, so 

"~rcs '~ Rg/vi "~' M 1/2/v i (20) 

Both the down-chain force F and the interface velocity 
v t are proportional to the local deformation rate k. The 
final extension ratio 2 = f(zff~,,) for some function f, as 
noted by Berger and Kramer 5. This means that within 
the present picture there is no'dependence of 2 on vi. The 
experimental evidence 5 is that there is a weak dependence 
with a low-rate value of ~ 7 dropping to ,~4 at high 
deformation rates. The latter value is the case for pure 
scission, suggesting that increasing amounts of chain 
scission are responsible for the non-constant 2. Since this 
is rate dependent, we can see that the presence of scission 
is entirely responsible for a molecular-weight dependence 
of interface velocity at fixed 2. Further work, however, 
is needed before we can make quantitative statements 
about this regime. 

Effect of ageing 
Finally we comment on the prediction of this model 

on the effect of ageing, or annealing, the polymer. The 
expression for the inverse mobility of the chain below 
the glass transition equation (2) may be written as an 
integral over the probability distribution of energies q~(E): 

lt-1..~#olMSexp{--E(s)/kT}q~(E)dE (21) 

If the well distribution has a lower cut-off, as it must, 
for the energies are bounded below by the ground state 
Eo, then it is easy to show that the mobility is governed 
by this cut-off and not by the average well depth due to 
the exponential term in equation (21). For example, we 
can consider a density of states at the 'band edge' which 
is locally a power law: 

c~(E) = H(E - Eo) ( E -  Eo) ~ (22) 

Here H(x) is the Heaviside step function. Now 
equation (21) becomes 

oo 

#-1 ,~ #o 1M(kT) =+ 1 exp{ - E o / k T  } Se-Xx-=dx (23) 
0 

Ageing a sample affects the average of the distribution, 
lowering energies and increasing yield stresses for 
processes that do not require every monomer to move, 
such as shear deformation. However, disentanglement 
can only occur by exciting every monomer out of its local 
well, and will be dominated by the lowest (rare) energies 
of local configurations, which are not affected by ageing 
providing that they approach the lower bound of the 
distribution of states. For a further discussion of mobility 
effects of energy distribution in glasses see Vilgl s17. This 
qualitative prediction is supported by experiments 9 
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which show very strong dependence on ageing in the 
critical stress for shear deformation of PES and PC, but 
no observable change in the crazing behaviour of the 
same samples. 

C O N C L U S I O N S  

The non-diffusive reptation model of polymer crazing 
can account for observed molecular weight dependencies 
of crazing stress, fibril separation and interface velocity 
when chain scission is not important.  When these 
dependencies are power laws we find that polymers may 
differ in the scaling exponents depending on the relative 
importance of Van der Waals surface energy to the 
disentanglement energy, taking one of two limiting forms. 

The absence of any effect of ageing on disentanglement 
crazing may also be explained if the chain mobility in 
the glass is dominated by rare low energy local 
configurations. It  would be interesting to explore the 
possibility of observing these spectroscopically. 

Further consideration needs to be given to cases where 
both scission and disentanglement occur together, as 
much experimental data lie in a crossover regime. 
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